
7
Rings

This chapter introduces the notion of a ring, more specifically, a commutative ring
with unity. While there is a lot of terminology associated with rings, the basic ideas
are fairly simple. Intuitively speaking, a ring is an algebraic structure with addition
and multiplication operations that behave as one would expect.

7.1 Definitions, basic properties, and examples
Definition 7.1. A commutative ring with unity is a set R together with addition
and multiplication operations on R, such that:

(i) the set R under addition forms an abelian group, and we denote the additive
identity by 0R;

(ii) multiplication is associative; that is, for all a, b, c ∈ R, we have a(bc) =
(ab)c;

(iii) multiplication distributes over addition; that is, for all a, b, c ∈ R, we have
a(b + c) = ab + ac and (b + c)a = ba + ca;

(iv) there exists a multiplicative identity; that is, there exists an element 1R ∈ R,
such that 1R · a = a = a · 1R for all a ∈ R;

(v) multiplication is commutative; that is, for all a, b ∈ R, we have ab = ba.

There are other, more general (and less convenient) types of rings — one can
drop properties (iv) and (v), and still have what is called a ring. We shall not,
however, be working with such general rings in this text. Therefore, to simplify
terminology, from now on, by a “ring,” we shall always mean a commutative
ring with unity.

Let R be a ring. Notice that because of the distributive law, for any fixed a ∈ R,
the map from R to R that sends b ∈ R to ab ∈ R is a group homomorphism with
respect to the underlying additive group of R. We call this the a-multiplication
map.
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We first state some simple facts:

Theorem 7.2. Let R be a ring. Then:

(i) the multiplicative identity 1R is unique;

(ii) 0R · a = 0R for all a ∈ R;

(iii) (−a)b = −(ab) = a(−b) for all a, b ∈ R;

(iv) (−a)(−b) = ab for all a, b ∈ R;

(v) (ka)b = k(ab) = a(kb) for all k ∈ Z and a, b ∈ R.

Proof. Part (i) may be proved using the same argument as was used to prove
part (i) of Theorem 6.2. Parts (ii), (iii), and (v) follow directly from parts (i),
(ii), and (iii) of Theorem 6.19, using appropriate multiplication maps, discussed
above. Part (iv) follows from part (iii), along with part (iv) of Theorem 6.3:
(−a)(−b) = −(a(−b)) = −(−(ab)) = ab. 2

Example 7.1. The set Z under the usual rules of multiplication and addition forms
a ring. 2

Example 7.2. For n ≥ 1, the set Zn under the rules of multiplication and addition
defined in §2.5 forms a ring. 2

Example 7.3. The set Q of rational numbers under the usual rules of multiplication
and addition forms a ring. 2

Example 7.4. The set R of real numbers under the usual rules of multiplication
and addition forms a ring. 2

Example 7.5. The set C of complex numbers under the usual rules of multiplica-
tion and addition forms a ring. Every α ∈ C can be written (uniquely) as α = a+bi,
where a, b ∈ R and i =

√
−1. If α′ = a′ + b′i is another complex number, with

a′, b′ ∈ R, then

α + α′ = (a + a′) + (b + b′)i and αα′ = (aa′ − bb′) + (ab′ + a′b)i.

The fact that C is a ring can be verified by direct calculation; however, we shall see
later that this follows easily from more general considerations.

Recall the complex conjugation operation, which sends α to α := a − bi. One
can verify by direct calculation that complex conjugation is both additive and mul-
tiplicative; that is, α + α′ = α + α′ and α · α′ = α · α′.

The norm of α is N (α) := αα = a2 + b2. So we see that N (α) is a non-negative
real number, and is zero if and only if α = 0. Moreover, from the multiplicativity
of complex conjugation, it is easy to see that the norm is multiplicative as well:
N (αα′) = αα′αα′ = αα′αα′ = ααα′α′ = N (α)N (α′). 2
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Example 7.6. Consider the set F of all arithmetic functions, that is, functions
mapping positive integers to reals. Let us define addition of arithmetic functions
point-wise (i.e., (f + g)(n) = f (n) + g(n) for all positive integers n) and multi-
plication using the Dirichlet product, introduced in §2.9. The reader should verify
that with addition and multiplication so defined, F forms a ring, where the all-zero
function is the additive identity, and the special function I defined in §2.9 is the
multiplicative identity. 2

Example 7.7. Generalizing Example 6.18, if R1, . . . ,Rk are rings, then we can
form the direct product S := R1 × · · · × Rk, which consists of all k-tuples
(a1, . . . , ak) with a1 ∈ R1, . . . , ak ∈ Rk. We can view S in a natural way as
a ring, with addition and multiplication defined component-wise. The additive
identity is (0R1 , . . . , 0Rk ) and the multiplicative identity is (1R1 , . . . , 1Rk ). When
R = R1 = · · · = Rk, the k-wise direct product of R is denoted R×k. 2

Example 7.8. Generalizing Example 6.19, if I is an arbitrary set and R is a ring,
then Map(I ,R), which is the set of all functions f : I → R, may be natu-
rally viewed as a ring, with addition and multiplication defined point-wise: for
f , g ∈ Map(I ,R), we define

(f + g)(i) := f (i) + g(i) and (f · g)(i) := f (i) · g(i) for all i ∈ I .

We leave it to the reader to verify that Map(I ,R) is indeed a ring, where the addi-
tive identity is the all-zero function, and the multiplicative identity is the all-one
function. 2

A ring R may be trivial, meaning that it consists of the single element 0R, with
0R+0R = 0R and 0R ·0R = 0R. Certainly, ifR is trivial, then 1R = 0R. Conversely,
if 1R = 0R, then for all a ∈ R, we have a = 1R · a = 0R · a = 0R, and hence R
is trivial. Trivial rings are not very interesting, but they naturally arise in certain
constructions.

For a1, . . . , ak ∈ R, the product a1 · · · ak needs no parentheses, because mul-
tiplication is associative; moreover, we can reorder the ai’s without changing the
value of the product, since multiplication is commutative. We can also write this
product as

∏k
i=1 ai. By convention, such a product is defined to be 1R when k = 0.

When a = a1 = · · · = ak, we can write this product as ak. The reader may verify
the usual power laws: for all a, b ∈ R, and all non-negative integers k and `, we
have

(a`)k = ak` = (ak)`, ak+` = aka`, (ab)k = akbk. (7.1)
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For all a1, . . . , ak, b1, . . . , b` ∈ R, the distributive law implies

(a1 + · · · + ak)(b1 + · · · + b`) =
∑

1≤i≤k
1≤j≤`

aibj.

A ring R is in particular an abelian group with respect to addition. We shall call
a subgroup of the additive group of R an additive subgroup of R. The charac-
teristic of R is defined as the exponent of this group (see §6.5). Note that for all
m ∈ Z and a ∈ R, we have

ma = m(1R · a) = (m · 1R)a,

so that if m · 1R = 0R, then ma = 0R for all a ∈ R. Thus, if the additive order of
1R is infinite, the characteristic of R is zero, and otherwise, the characteristic of R
is equal to the additive order of 1R.

Example 7.9. The ring Z has characteristic zero, Zn has characteristic n, and
Zn1 × Zn2 has characteristic lcm(n1, n2). 2

When there is no possibility for confusion, one may write “0” instead of “0R”
and “1” instead of “1R.” Also, one may also write, for example, 2R to denote 2 ·1R,
3R to denote 3 · 1R, and so on; moreover, where the context is clear, one may use
an implicit “type cast,” so that m ∈ Z really means m · 1R.

EXERCISE 7.1. Show that the familiar binomial theorem (see §A2) holds in an
arbitrary ring R; that is, for all a, b ∈ R and every positive integer n, we have

(a + b)n =
n
∑

k=0

(

n

k

)

an−kbk.

EXERCISE 7.2. Let R be a ring. For additive subgroups A and B of R, we
define their ring-theoretic product AB as the set of all elements of R that can
be expressed as

a1b1 + · · · + akbk

for some a1, . . . , ak ∈ A and b1, . . . , bk ∈ B; by definition, this set includes the
“empty sum” 0R. Show that for all additive subgroups A, B, and C of R:

(a) AB is also an additive subgroup of R;

(b) AB = BA;

(c) A(BC) = (AB)C;

(d) A(B + C) = AB + AC.
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7.1.1 Divisibility, units, and fields
For elements a, b in a ring R, we say that a divides b if ar = b for some r ∈ R. If
a divides b, we write a | b, and we may say that a is a divisor of b, or that b is a
multiple of a, or that b is divisible by a. If a does not divide b, then we write a - b.
Note that Theorem 1.1 holds for an arbitrary ring.

We call a ∈ R a unit if a | 1R, that is, if ar = 1R for some r ∈ R. Using the
same argument as was used to prove part (ii) of Theorem 6.2, it is easy to see that r
is uniquely determined; it is called the multiplicative inverse of a, and we denote
it by a−1. Also, for b ∈ R, we may write b/a to denote ba−1. Evidently, if a is a
unit, then a | b for every b ∈ R.

We denote the set of units by R∗. It is easy to see that 1R ∈ R∗. Moreover,
R∗ is closed under multiplication; indeed, if a and b are elements of R∗, then
(ab)−1 = a−1b−1. It follows that with respect to the multiplication operation of
the ring, R∗ is an abelian group, called the multiplicative group of units of R.
If a ∈ R∗ and k is a positive integer, then ak ∈ R∗; indeed, the multiplicative
inverse of ak is (a−1)k, which we may also write as a−k (which is consistent with
our notation for abelian groups). For all a, b ∈ R∗, the identities (7.1) hold for all
integers k and `.

If R is non-trivial and every non-zero element of R has a multiplicative inverse,
then R is called a field.

Example 7.10. The only units in the ring Z are ±1. Hence, Z is not a field. 2

Example 7.11. Let n be a positive integer. The units in Zn are the residue classes
[a]n with gcd(a, n) = 1. In particular, if n is prime, all non-zero residue classes are
units, and if n is composite, some non-zero residue classes are not units. Hence, Zn
is a field if and only if n is prime. The notation Z∗n introduced in this section for the
group of units of the ring Zn is consistent with the notation introduced in §2.5. 2

Example 7.12. Every non-zero element of Q is a unit. Hence, Q is a field. 2

Example 7.13. Every non-zero element of R is a unit. Hence, R is a field. 2

Example 7.14. For non-zero α = a + bi ∈ C, with a, b ∈ R, we have c := N (α) =
a2 + b2 > 0. It follows that the complex number αc−1 = (ac−1) + (−bc−1)i is the
multiplicative inverse of α, since α · αc−1 = (αα)c−1 = 1. Hence, every non-zero
element of C is a unit, and so C is a field. 2

Example 7.15. For rings R1, . . . ,Rk, it is easy to see that the multiplicative group
of units of the direct product R1 × · · · × Rk is equal to R∗1 × · · · × R

∗
k. Indeed, by

definition, (a1, . . . , ak) has a multiplicative inverse if and only if each individual ai
does. 2
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Example 7.16. If I is a set and R is a ring, then the units in Map(I ,R) are those
functions f : I → R such that f (i) ∈ R∗ for all i ∈ I . 2

Example 7.17. Consider the ring F of arithmetic functions defined in Example 7.6.
By the result of Exercise 2.54, F∗ = {f ∈ F : f (1) 6= 0}. 2

7.1.2 Zero divisors and integral domains
Let R be a ring. If a and b are non-zero elements of R such that ab = 0, then a
and b are both called zero divisors. If R is non-trivial and has no zero divisors,
then it is called an integral domain. Note that if a is a unit in R, it cannot be a
zero divisor (if ab = 0, then multiplying both sides of this equation by a−1 yields
b = 0). In particular, it follows that every field is an integral domain.

Example 7.18. Z is an integral domain. 2

Example 7.19. For n > 1, Zn is an integral domain if and only if n is prime. In
particular, if n is composite, so n = ab with 1 < a < n and 1 < b < n, then [a]n
and [b]n are zero divisors: [a]n[b]n = [0]n, but [a]n 6= [0]n and [b]n 6= [0]n. 2

Example 7.20. Q, R, and C are fields, and hence are also integral domains. 2

Example 7.21. For two non-trivial rings R1,R2, an element (a1, a2) ∈ R1 × R2 is
a zero divisor if and only if a1 is a zero divisor, a2 is a zero divisor, or exactly one
of a1 or a2 is zero. In particular, R1 × R2 is not an integral domain. 2

The next two theorems establish certain results that are analogous to familiar
facts about integer divisibility. These results hold in a general ring, provided one
avoids zero divisors. The first is a cancellation law:

Theorem 7.3. If R is a ring, and a, b, c ∈ R such that a 6= 0 and a is not a zero
divisor, then ab = ac implies b = c.

Proof. ab = bc implies a(b− c) = 0. The fact that a 6= 0 and a is not a zero divisor
implies that we must have b − c = 0, and so b = c. 2

Theorem 7.4. Let R be a ring.

(i) Suppose a, b ∈ R, and that either a or b is not a zero divisor. Then a | b
and b | a if and only if ar = b for some r ∈ R∗.

(ii) Suppose a, b ∈ R, a | b, a 6= 0, and a is not a zero divisor. Then there
exists a unique r ∈ R such that ar = b, which we denote by b/a.

Proof. For the first statement, if ar = b for some r ∈ R∗, then we also have
br−1 = a; thus, a | b and b | a. For the converse, suppose that a | b and b | a. We



172 Rings

may assume that b is not a zero divisor (otherwise, exchange the roles of a and b).
We may also assume that b is non-zero (otherwise, b | a implies a = 0, and so the
conclusion holds with any r). Now, a | b implies ar = b for some r ∈ R, and b | a
implies br′ = a for some r′ ∈ R, and hence b = ar = br′r. Canceling b from both
sides of the equation b = br′r, we obtain 1 = r′r, and so r is a unit.

For the second statement, a | b means ar = b for some r ∈ R. Moreover, this
value of r is unique: if ar = b = ar′, then we may cancel a, obtaining r = r′. 2

Of course, in the previous two theorems, if the ring is an integral domain, then
there are no zero divisors, and so the hypotheses may be simplified in this case,
dropping the explicit requirement that certain elements are not zero divisors. In
particular, if a, b, and c are elements of an integral domain, such that ab = ac and
a 6= 0, then we can cancel a, obtaining b = c.

The next two theorems state some facts which pertain specifically to integral
domains.

Theorem 7.5. The characteristic of an integral domain is either zero or a prime.

Proof. By way of contradiction, suppose that D is an integral domain with char-
acteristic m that is neither zero nor prime. Since, by definition, D is not a trivial
ring, we cannot have m = 1, and so m must be composite. Say m = st, where
1 < s < m and 1 < t < m. Since m is the additive order of 1D, it follows that
(s ·1D) 6= 0D and (t ·1D) 6= 0D; moreover, sinceD is an integral domain, it follows
that (s · 1D)(t · 1D) 6= 0D. So we have

0D = m · 1D = (st) · 1D = (s · 1D)(t · 1D) 6= 0D,

a contradiction. 2

Theorem 7.6. Every finite integral domain is a field.

Proof. Let D be a finite integral domain, and let a be any non-zero element of
D. Consider the a-multiplication map that sends b ∈ D to ab, which is a group
homomorphism on the additive group ofD. Since a is not a zero-divisor, it follows
that the kernel of the a-multiplication map is {0D}, hence the map is injective, and
by finiteness, it must be surjective as well. In particular, there must be an element
b ∈ D such that ab = 1D. 2

Theorem 7.7. Every finite field F must be of cardinality pw, where p is prime, w
is a positive integer, and p is the characteristic of F .

Proof. By Theorem 7.5, the characteristic of F is either zero or a prime, and since
F is finite, it must be prime. Let p denote the characteristic. By definition, p is
the exponent of the additive group of F , and by Theorem 6.43, the primes dividing
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the exponent are the same as the primes dividing the order, and hence F must have
cardinality pw for some positive integer w. 2

Of course, for every prime p, Zp is a finite field of cardinality p. As we shall
see later (in Chapter 19), for every prime p and positive integer w, there exists a
field of cardinality pw. Later in this chapter, we shall see some specific examples
of finite fields of cardinality p2 (Examples 7.40, 7.59, and 7.60).

EXERCISE 7.3. Let R be a ring, and let a, b ∈ R such that ab 6= 0. Show that ab is
a zero divisor if and only if a is a zero divisor or b is a zero divisor.

EXERCISE 7.4. Suppose that R is a non-trivial ring in which the cancellation law
holds in general: for all a, b, c ∈ R, if a 6= 0 and ab = ac, then b = c. Show that R
is an integral domain.

EXERCISE 7.5. Let R be a ring of characteristic m > 0, and let n be an integer.
Show that:

(a) if gcd(n,m) = 1, then n · 1R is a unit;

(b) if 1 < gcd(n,m) < m, then n · 1R is a zero divisor;

(c) otherwise, n · 1R = 0.

EXERCISE 7.6. Let D be an integral domain, m ∈ Z, and a ∈ D. Show that
ma = 0 if and only if m is a multiple of the characteristic of D or a = 0.

EXERCISE 7.7. Show that for all n ≥ 1, and for all a, b ∈ Zn, if a | b and b | a,
then ar = b for some r ∈ Z∗n. Hint: this result does not follow from part (i) of
Theorem 7.4, as we allow a and b to be zero divisors here; first consider the case
where n is a prime power.

EXERCISE 7.8. Show that the ring F of arithmetic functions defined in Exam-
ple 7.6 is an integral domain.

EXERCISE 7.9. This exercise depends on results in §6.6. Using the fundamental
theorem of finite abelian groups, show that the additive group of a finite field of
characteristic p and cardinality pw is isomorphic to Z×wp .

7.1.3 Subrings
Definition 7.8. A subset S of a ring R is called a subring if

(i) S is an additive subgroup of R,

(ii) S is closed under multiplication, and

(iii) 1R ∈ S.
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It is clear that the operations of addition and multiplication on a ring R make
a subring S of R into a ring, where 0R is the additive identity of S and 1R is the
multiplicative identity of S. One may also call R an extension ring of S.

Some texts do not require that 1R belongs to a subring S, and instead require
only that S contains a multiplicative identity, which may be different than that of
R. This is perfectly reasonable, but for simplicity, we restrict ourselves to the case
where 1R ∈ S.

Expanding the above definition, we see that a subset S of R is a subring if and
only if 1R ∈ S and for all a, b ∈ S, we have

a + b ∈ S, −a ∈ S, and ab ∈ S.

In fact, to verify that S is a subring, it suffices to show that −1R ∈ S and that S is
closed under addition and multiplication; indeed, if −1R ∈ S and S is closed under
multiplication, then S is closed under negation, and further, 1R = −(−1R) ∈ S.

Example 7.22. Z is a subring of Q. 2

Example 7.23. Q is a subring of R. 2

Example 7.24. R is a subring of C. Note that for all α := a+bi ∈ C, with a, b ∈ R,
we have α = α ⇐⇒ a + bi = a − bi ⇐⇒ b = 0. That is, α = α ⇐⇒ α ∈ R. 2

Example 7.25. The set Z[i] of complex numbers of the form a+ bi, with a, b ∈ Z,
is a subring of C. It is called the ring of Gaussian integers. Since C is a field, it
contains no zero divisors, and hence Z[i] contains no zero divisors either. Hence,
Z[i] is an integral domain.

Let us determine the units of Z[i]. Suppose α ∈ Z[i] is a unit, so that there exists
α′ ∈ Z[i] such that αα′ = 1. Taking norms, we obtain

1 = N (1) = N (αα′) = N (α)N (α′).

Since the norm of any Gaussian integer is itself a non-negative integer, and since
N (α)N (α′) = 1, we must have N (α) = 1. Now, if α = a + bi, with a, b ∈ Z, then
1 = N (α) = a2 + b2, which implies that α = ±1 or α = ±i. Conversely, it is easy
to see that ±1 and ±i are indeed units, and so these are the only units in Z[i]. 2

Example 7.26. Let m be a positive integer, and let Q(m) be the set of rational
numbers which can be written as a/b, where a and b are integers, and b is rela-
tively prime to m. Then Q(m) is a subring of Q, since for all a, b, c, d ∈ Z with
gcd(b,m) = 1 and gcd(d,m) = 1, we have

a

b
+
c

d
=
ad + bc
bd

and
a

b
·
c

d
=
ac

bd
,

and since gcd(bd,m) = 1, it follows that the sum and product of any two elements
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of Q(m) are again in Q(m). Clearly, Q(m) contains −1, and so it follows that Q(m) is
a subring of Q. The units of Q(m) are precisely those rational numbers of the form
a/b, where gcd(a,m) = gcd(b,m) = 1. 2

Example 7.27. Suppose R is a non-trivial ring. Then the set {0R} is not a subring
of R: although it satisfies the first two requirements of the definition of a subring,
it does not satisfy the third. 2

Generalizing the argument in Example 7.25, it is clear that every subring of an
integral domain is itself an integral domain. However, it is not the case that a
subring of a field is always a field: the subring Z of Q is a counter-example. If F ′

is a subring of a field F , and F ′ is itself a field, then we say that F ′ is a subfield of
F , and that F is an extension field of F ′. For example, Q is a subfield of R, which
in turn is a subfield of C.

EXERCISE 7.10. Show that if S is a subring of a ring R, then a set T ⊆ S is a
subring of R if and only if T is a subring of S.

EXERCISE 7.11. Show that if S and T are subrings of R, then so is S ∩ T .

EXERCISE 7.12. Let S1 be a subring of R1, and S2 a subring of R2. Show that
S1 × S2 is a subring of R1 × R2.

EXERCISE 7.13. Suppose that S and T are subrings of a ring R. Show that their
ring-theoretic product ST (see Exercise 7.2) is a subring of R that contains S ∪ T ,
and is the smallest such subring.

EXERCISE 7.14. Show that the set Q[i] of complex numbers of the form a + bi,
with a, b ∈ Q, is a subfield of C.

EXERCISE 7.15. Consider the ring Map(R, R) of functions f : R → R, with
addition and multiplication defined point-wise.

(a) Show that Map(R, R) is not an integral domain, and that Map(R, R)∗ con-
sists of those functions that never vanish.

(b) Let a, b ∈ Map(R, R). Show that if a | b and b | a, then ar = b for some
r ∈ Map(R, R)∗.

(c) Let C be the subset of Map(R, R) of continuous functions. Show that C is
a subring of Map(R, R), and that all functions in C∗ are either everywhere
positive or everywhere negative.

(d) Find elements a, b ∈ C, such that in the ring C, we have a | b and b | a, yet
there is no r ∈ C∗ such that ar = b.
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7.2 Polynomial rings
If R is a ring, then we can form the ring of polynomials R[X ], consisting of
all polynomials g = a0 + a1X + · · · + akX

k in the indeterminate, or “formal”
variable, X , with coefficients ai in R, and with addition and multiplication defined
in the usual way.

Example 7.28. Let us define a few polynomials over the ring Z:

a := 3 + X 2, b := 1 + 2X − X 3, c := 5, d := 1 + X , e := X , f := 4X 3.

We have

a+b = 4+2X +X 2−X 3, a ·b = 3+6X +X 2−X 3−X 5, cd+ef = 5+5X +4X 4. 2

As illustrated in the previous example, elements of R are also considered to be
polynomials. Such polynomials are called constant polynomials. The set R of
constant polynomials forms a subring of R[X ]. In particular, 0R is the additive
identity in R[X ] and 1R is the multiplicative identity in R[X ]. Note that if R is the
trivial ring, then so is R[X ]; also, if R is a subring of E, then R[X ] is a subring of
E[X ].

So as to keep the distinction between ring elements and indeterminates clear, we
shall use the symbol “X” only to denote the latter. Also, for a polynomial g ∈ R[X ],
we shall in general write this simply as “g,” and not as “g(X ).” Of course, the
choice of the symbol “X” is arbitrary; occasionally, we may use another symbol,
such as “Y ,” as an alternative.

7.2.1 Formalities
For completeness, we present a more formal definition of the ring R[X ]. The
reader should bear in mind that this formalism is rather tedious, and may be more
distracting than it is enlightening. Formally, a polynomial g ∈ R[X ] is an infinite
sequence {ai}∞i=0, where each ai ∈ R, but only finitely many of the ai’s are non-
zero (intuitively, ai represents the coefficient of X i). For each non-negative integer
j, it will be convenient to define the function εj : R → R[X ] that maps c ∈ R to
the sequence {ci}∞i=0 ∈ R[X ], where cj := c and ci := 0R for i 6= j (intuitively,
εj(c) represents the polynomial cX j).

For

g = {ai}∞i=0 ∈ R[X ] and h = {bi}∞i=0 ∈ R[X ],

we define

g + h := {si}∞i=0 and gh := {pi}∞i=0,
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where for i = 0, 1, 2, . . . ,

si := ai + bi (7.2)

and

pi :=
∑

i=j+k

ajbk, (7.3)

the sum being over all pairs (j, k) of non-negative integers such that i = j + k

(which is a finite sum). We leave it to the reader to verify that g + h and gh are
polynomials (i.e., only finitely many of the si’s and pi’s are non-zero). The reader
may also verify that all the requirements of Definition 7.1 are satisfied: the additive
identity is the all-zero sequence ε0(0R), and the multiplicative identity is ε0(1R).

One can easily verify that for all c, d ∈ R, we have

ε0(c + d) = ε0(c) + ε0(d) and ε0(cd) = ε0(c)ε0(d).

We shall identify c ∈ R with ε0(c) ∈ R[X ], viewing the ring element c as simply
“shorthand” for the polynomial ε0(c) in contexts where a polynomial is expected.
Note that while c and ε0(c) are not the same mathematical object, there will be no
confusion in treating them as such. Thus, from a narrow, legalistic point of view, R
is not a subring of R[X ], but we shall not let such annoying details prevent us from
continuing to speak of it as such. Indeed, by appropriately renaming elements, we
can make R a subring of R[X ] in the literal sense of the term.

We also define X := ε1(1R). One can verify that X i = εi(1R) for all i ≥ 0.
More generally, for any polynomial g = {ai}∞i=0, if ai = 0R for all i exceeding
some value k, then we have g =

∑k
i=0 ε0(ai)X i. Writing ai in place of ε0(ai),

we have g =
∑k
i=0 aiX

i, and so we can return to the standard practice of writing
polynomials as we did in Example 7.28, without any loss of precision.

7.2.2 Basic properties of polynomial rings
LetR be a ring. For non-zero g ∈ R[X ], if g =

∑k
i=0 aiX

i with ak 6= 0, then we call
k the degree of g, denoted deg(g), we call ak the leading coefficient of g, denoted
lc(g), and we call a0 the constant term of g. If lc(g) = 1, then g is called monic.

Suppose g =
∑k
i=0 aiX

i and h =
∑`
i=0 biX

i are polynomials such that ak 6= 0 and
b` 6= 0, so that deg(g) = k and lc(g) = ak, and deg(h) = ` and lc(h) = b`. When
we multiply these two polynomials, we get

gh = a0b0 + (a0b1 + a1b0)X + · · · + akb`X k+`.

In particular, deg(gh) ≤ deg(g)+ deg(h). If either of ak or b` are not zero divisors,
then akb` is not zero, and hence deg(gh) = deg(g) + deg(h). However, if both ak
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and b` are zero divisors, then we may have akb` = 0, in which case, the product gh
may be zero, or perhaps gh 6= 0 but deg(gh) < deg(g) + deg(h).

For the zero polynomial, we establish the following conventions: its leading
coefficient and constant term are defined to be 0R, and its degree is defined to be
−∞. With these conventions, we may succinctly state that

for all g, h ∈ R[X ], we have deg(gh) ≤ deg(g) + deg(h), with
equality guaranteed to hold unless the leading coefficients of both g
and h are zero divisors.

In particular, if the leading coefficient of a polynomial is not a zero divisor, then
the polynomial is not a zero divisor. In the case where the ring of coefficients is an
integral domain, we can be more precise:

Theorem 7.9. Let D be an integral domain. Then:

(i) for all g, h ∈ D[X ], we have deg(gh) = deg(g) + deg(h);

(ii) D[X ] is an integral domain;

(iii) (D[X ])∗ = D∗.

Proof. Exercise. 2

An extremely important property of polynomials is a division with remainder
property, analogous to that for the integers:

Theorem 7.10 (Division with remainder property). Let R be a ring. For all
g, h ∈ R[X ] with h 6= 0 and lc(h) ∈ R∗, there exist unique q, r ∈ R[X ] such that
g = hq + r and deg(r) < deg(h).

Proof. Consider the set S := {g − ht : t ∈ R[X ]}. Let r = g − hq be an element
of S of minimum degree. We must have deg(r) < deg(h), since otherwise, we
could subtract an appropriate multiple of h from r so as to eliminate the leading
coefficient of r, obtaining

r′ := r − h · (lc(r) lc(h)−1X deg(r)−deg(h)) ∈ S,

where deg(r′) < deg(r), contradicting the minimality of deg(r).
That proves the existence of r and q. For uniqueness, suppose that g = hq + r

and g = hq′ + r′, where deg(r) < deg(h) and deg(r′) < deg(h). This implies
r′ − r = h · (q − q′). However, if q 6= q′, then

deg(h) > deg(r′ − r) = deg(h · (q − q′)) = deg(h) + deg(q − q′) ≥ deg(h),

which is impossible. Therefore, we must have q = q′, and hence r = r′. 2

If g = hq + r as in the above theorem, we define g mod h := r. Clearly, h | g if
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and only if g mod h = 0. Moreover, note that if deg(g) < deg(h), then q = 0 and
r = g; otherwise, if deg(g) ≥ deg(h), then q 6= 0 and deg(g) = deg(h) + deg(q).

7.2.3 Polynomial evaluation
A polynomial g =

∑k
i=0 aiX

i ∈ R[X ] naturally defines a polynomial function on R
that sends x ∈ R to

∑k
i=0 aix

i ∈ R, and we denote the value of this function as g(x)
(note that “X” denotes an indeterminate, while “x” denotes an element of R). It is
important to regard polynomials over R as formal expressions, and not to identify
them with their corresponding functions. In particular, two polynomials are equal
if and only if their coefficients are equal, while two functions are equal if and only
if their values agree at all points in R. This distinction is important, since there are
rings R over which two different polynomials define the same function. One can
of course define the ring of polynomial functions on R, but in general, that ring has
a different structure from the ring of polynomials over R.

Example 7.29. In the ring Zp, for prime p, by Fermat’s little theorem (Theo-
rem 2.14), we have xp = x for all x ∈ Zp. However, the polynomials X p and
X are not the same polynomials (in particular, the former has degree p, while the
latter has degree 1). 2

More generally, suppose R is a subring of a ring E. Then every polynomial
g =

∑k
i=0 aiX

i ∈ R[X ] defines a polynomial function from E to E that sends
α ∈ E to

∑k
i=0 aiα

i ∈ E, and, again, the value of this function is denoted g(α). We
say that α is a root of g if g(α) = 0.

An obvious, yet important, fact is the following:

Theorem 7.11. Let R be a subring of a ring E. For all g, h ∈ R[X ] and α ∈ E, if
s := g + h ∈ R[X ] and p := gh ∈ R[X ], then we have

s(α) = g(α) + h(α) and p(α) = g(α)h(α).

Also, if c ∈ R is a constant polynomial, then c(α) = c for all α ∈ E.

Proof. The statement about evaluating a constant polynomial is clear from the
definitions. The proof of the statements about evaluating the sum or product of
polynomials is really just symbol pushing. Indeed, suppose g =

∑

i aiX
i and

h =
∑

i biX
i. Then s =

∑

i(ai + bi)X
i, and so

s(α) =
∑

i

(ai + bi)αi =
∑

i

aiα
i +
∑

i

biα
i = g(α) + h(α).
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Also, we have

p =
(

∑

i

aiX
i
)(

∑

j

bjX
j
)

=
∑

i,j

aibjX
i+j,

and employing the result for evaluating sums of polynomials, we have

p(α) =
∑

i,j

aibjα
i+j =

(

∑

i

aiα
i
)(

∑

j

bjα
j
)

= g(α)h(α). 2

Example 7.30. Consider the polynomial g := 2X 3 − 2X 2 + X − 1 ∈ Z[X ]. We can
write g = (2X 2 + 1)(X − 1). For any element α of Z, or an extension ring of Z, we
have g(α) = (2α2 + 1)(α − 1). From this, it is clear that in Z, g has a root only at
1; moreover, it has no other roots in R, but in C, it also has roots ±i/

√
2. 2

Example 7.31. If E = R[X ], then evaluating a polynomial g ∈ R[X ] at a point
α ∈ E amounts to polynomial composition. For example, if g := X 2 + X and
α := X + 1, then

g(α) = g
(

X + 1
)

= (X + 1)2 + (X + 1) = X 2 + 3X + 2. 2

The reader is perhaps familiar with the fact that over the real or the complex
numbers, every polynomial of degree k has at most k distinct roots, and the fact
that every set of k points can be interpolated by a unique polynomial of degree less
than k. As we will now see, these results extend to much more general, though not
completely arbitrary, coefficient rings.

Theorem 7.12. Let R be a ring, g ∈ R[X ], and x ∈ R. Then there exists a unique
polynomial q ∈ R[X ] such that g = (X − x)q + g(x). In particular, x is a root of g
if and only if (X − x) divides g.

Proof. If R is the trivial ring, there is nothing to prove, so assume that R is non-
trivial. Using the division with remainder property for polynomials, there exist
unique q, r ∈ R[X ] such that g = (X − x)q + r, with q, r ∈ R[X ] and deg(r) < 1,
which means that r ∈ R. Evaluating at x, we see that g(x) = (x − x)q(x) + r = r.
That proves the first statement. The second follows immediately from the first. 2

Note that the above theorem says that X −x divides g−g(x), and the polynomial
q in the theorem may be expressed (using the notation introduced in part (ii) of
Theorem 7.4) as

q =
g − g(x)
X − x

.

Theorem 7.13. Let D be an integral domain, and let x1, . . . , xk be distinct ele-
ments of D. Then for every polynomial g ∈ D[X ], the elements x1, . . . , xk are
roots of g if and only if the polynomial

∏k
i=1(X − xi) divides g.



7.2 Polynomial rings 181

Proof. One direction is trivial: if
∏k

i=1(X − xi) divides g, then it is clear that each
xi is a root of g. We prove the converse by induction on k. The base case k = 1 is
just Theorem 7.12. So assume k > 1, and that the statement holds for k − 1. Let
g ∈ D[X ] and let x1, . . . , xk be distinct roots of g. Since xk is a root of g, then by
Theorem 7.12, there exists q ∈ D[X ] such that g = (X − xk)q. Moreover, for each
i = 1, . . . , k − 1, we have

0 = g(xi) = (xi − xk)q(xi),

and since xi − xk 6= 0 and D is an integral domain, we must have q(xi) = 0. Thus,
q has roots x1, . . . , xk−1, and by induction

∏k−1
i=1 (X − xi) divides q, from which it

then follows that
∏k

i=1(X − xi) divides g. 2

Note that in this theorem, we can slightly weaken the hypothesis: we do not need
to assume that the coefficient ring is an integral domain; rather, all we really need
is that for all i 6= j, the difference xi − xj is not a zero divisor.

As an immediate consequence of this theorem, we obtain:

Theorem 7.14. Let D be an integral domain, and suppose that g ∈ D[X ], with
deg(g) = k ≥ 0. Then g has at most k distinct roots.

Proof. If g had k + 1 distinct roots x1, . . . , xk+1, then by the previous theorem,
the polynomial

∏k+1
i=1 (X − xi), which has degree k + 1, would divide g, which has

degree k—an impossibility. 2

Theorem 7.15 (Lagrange interpolation). Let F be a field, let x1, . . . , xk be dis-
tinct elements of F , and let y1, . . . , yk be arbitrary elements of F . Then there
exists a unique polynomial g ∈ F [X ] with deg(g) < k such that g(xi) = yi for
i = 1, . . . , k, namely

g :=
k
∑

i=1

yi

∏

j 6=i(X − xj)
∏

j 6=i(xi − xj)
.

Proof. For the existence part of the theorem, one just has to verify that g(xi) = yi
for the given g, which clearly has degree less than k. This is easy to see: for
i = 1, . . . , k, evaluating the ith term in the sum defining g at xi yields yi, while
evaluating any other term at xi yields 0. The uniqueness part of the theorem follows
almost immediately from Theorem 7.14: if g and h are polynomials of degree less
than k such that g(xi) = yi = h(xi) for i = 1, . . . , k, then g − h is a polynomial
of degree less than k with k distinct roots, which, by the previous theorem, is
impossible. 2

Again, we can slightly weaken the hypothesis of this theorem: we do not need
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to assume that the coefficient ring is a field; rather, all we really need is that for all
i 6= j, the difference xi − xj is a unit.

EXERCISE 7.16. Let D be an infinite integral domain, and let g, h ∈ D[X ]. Show
that if g(x) = h(x) for all x ∈ D, then g = h. Thus, for an infinite integral
domain D, there is a one-to-one correspondence between polynomials over D and
polynomial functions on D.

EXERCISE 7.17. Let F be a field.

(a) Show that for all b ∈ F , we have b2 = 1 if and only if b = ±1.

(b) Show that for all a, b ∈ F , we have a2 = b2 if and only if a = ±b.
(c) Show that the familiar quadratic formula holds for F , assuming F has

characteristic other than 2, so that 2F 6= 0F . That is, for all a, b, c ∈ F with
a 6= 0, the polynomial g := aX 2 + bX + c ∈ F [X ] has a root in F if and
only if there exists e ∈ F such that e2 = d, where d is the discriminant of
g, defined as d := b2 − 4ac, and in this case the roots of g are (−b± e)/2a.

EXERCISE 7.18. Let R be a ring, let g ∈ R[X ], with deg(g) = k ≥ 0, and let x be
an element of R. Show that:

(a) there exist an integer m, with 0 ≤ m ≤ k, and a polynomial q ∈ R[X ], such
that

g = (X − x)mq and q(x) 6= 0,

and moreover, the values of m and q are uniquely determined;

(b) if we evaluate g at X + x, we have

g
(

X + x
)

=
k
∑

i=0

biX
i,

where b0 = · · · = bm−1 = 0 and bm = q(x) 6= 0.

Let mx(g) denote the value m in the previous exercise; for completeness, one
can define mx(g) :=∞ if g is the zero polynomial. If mx(g) > 0, then x is called a
root of g of multiplicity mx(g); if mx(g) = 1, then x is called a simple root of g,
and if mx(g) > 1, then x is called a multiple root of g.

The following exercise refines Theorem 7.14, taking into account multiplicities.

EXERCISE 7.19. Let D be an integral domain, and suppose that g ∈ D[X ], with
deg(g) = k ≥ 0. Show that

∑

x∈D
mx(g) ≤ k.
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EXERCISE 7.20. Let D be an integral domain, let g, h ∈ D[X ], and let x ∈ D.
Show that mx(gh) = mx(g) + mx(h).

7.2.4 Multi-variate polynomials
One can naturally generalize the notion of a polynomial in a single variable to that
of a polynomial in several variables.

Consider the ring R[X ] of polynomials over a ring R. If Y is another indeter-
minate, we can form the ring R[X ][Y ] of polynomials in Y whose coefficients are
themselves polynomials in X over the ring R. One may write R[X ,Y ] instead of
R[X ][Y ]. An element of R[X ,Y ] is called a bivariate polynomial.

Consider a typical element g ∈ R[X ,Y ], which may be written

g =
∑̀

j=0

(

k
∑

i=0

aijX
i
)

Y j. (7.4)

Rearranging terms, this may also be written as

g =
∑

0≤i≤k
0≤j≤`

aijX
iY j, (7.5)

or as

g =
k
∑

i=0

(

∑̀

j=0

aijY
j
)

X j. (7.6)

If g is written as in (7.5), the terms X iY j are called monomials. The total degree
of such a monomial X iY j is defined to be i + j, and if g is non-zero, then the total
degree of g, denoted Deg(g), is defined to be the maximum total degree among all
monomials X iY j appearing in (7.5) with a non-zero coefficient aij. We define the
total degree of the zero polynomial to be −∞.

When g is written as in (7.6), one sees that we can naturally view g as an element
of R[Y ][X ], that is, as a polynomial in X whose coefficients are polynomials in Y .
From a strict, syntactic point of view, the rings R[Y ][X ] and R[X ][Y ] are not the
same, but there is no harm done in blurring this distinction when convenient. We
denote by degX (g) the degree of g, viewed as a polynomial in X , and by degY (g)
the degree of g, viewed as a polynomial in Y .

Example 7.32. Let us illustrate, with a particular example, the three different
forms — as in (7.4), (7.5), and (7.6) — of expressing a bivariate polynomial. In
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the ring Z[X ,Y ] we have

g = (5X 2 − 3X + 4)Y + (2X 2 + 1)

= 5X 2Y + 2X 2 − 3XY + 4Y + 1

= (5Y + 2)X 2 + (−3Y )X + (4Y + 1).

We have Deg(g) = 3, degX (g) = 2, and degY (g) = 1. 2

More generally, we can form the ringR[X1, . . . ,Xn] of multi-variate polynomi-
als overR in the variables X1, . . . ,Xn. Formally, we can define this ring recursively
as R[X1, . . . ,Xn−1][Xn], that is, the ring of polynomials in the variable Xn, with
coefficients in R[X1, . . . ,Xn−1]. A monomial is a term of the form X e1

1 · · ·X
en
n ,

and the total degree of such a monomial is e1 + · · · + en. Every non-zero multi-
variate polynomial g can be expressed uniquely (up to a re-ordering of terms) as
a1µ1 + · · · + akµk, where each ai is a non-zero element of R, and each µi is a
monomial; we define the total degree of g, denoted Deg(g), to be the maximum of
the total degrees of the µi’s. As usual, the zero polynomial is defined to have total
degree −∞.

Just as for bivariate polynomials, the order of the indeterminates is not important,
and for every i = 1, . . . , n, one can naturally view any g ∈ R[X1, . . . ,Xn] as a
polynomial in X i over the ring R[X1, . . . ,X i−1,X i+1, . . . ,Xn], and define degX i (g)
to be the degree of g when viewed in this way.

Just as polynomials in a single variable define polynomial functions, so do
polynomials in several variables. If R is a subring of E, g ∈ R[X1, . . . ,Xn],
and α1, . . . , αn ∈ E, we define g(α1, . . . , αn) to be the element of E obtained by
evaluating the expression obtained by substituting αi for X i in g. Theorem 7.11
carries over directly to the multi-variate case.

EXERCISE 7.21. Let R be a ring, and consider the ring of multi-variate polyno-
mials R[X1, . . . ,Xn]. For m ≥ 0, define Hm to be the subset of polynomials that
can be expressed as a1µ1 + · · ·+ akµk, where each ai belongs to R and each µi is a
monomial of total degree m (by definition, Hm includes the zero polynomial, and
H0 = R). Polynomials that belong to Hm for some m are called homogeneous
polynomials. Show that:

(a) if g, h ∈ Hm, then g + h ∈ Hm;
(b) if g ∈ H` and h ∈ Hm, then gh ∈ H`+m;
(c) every non-zero polynomial g can be expressed uniquely as g0 + · · · + gd,

where gi ∈ Hi for i = 0, . . . , d, gd 6= 0, and d = Deg(g);
(d) for all polynomials g, h, we have Deg(gh) ≤ Deg(g) + Deg(h), and if R is

an integral domain, then Deg(gh) = Deg(g) + Deg(h).
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EXERCISE 7.22. Suppose that D is an integral domain, and g, h are non-zero,
multi-variate polynomials over D such that gh is homogeneous. Show that g and h
are also homogeneous.

EXERCISE 7.23. Let R be a ring, and let x1, . . . , xn be elements of R. Show that
every polynomial g ∈ R[X1, . . . ,Xn] can be expressed as

g = (X1 − x1)q1 + · · · + (Xn − xn)qn + g(x1, . . . , xn),

where q1, . . . , qn ∈ R[X1, . . . ,Xn].

EXERCISE 7.24. This exercise generalizes Theorem 7.14. Let D be an integral
domain, and let g ∈ D[X1, . . . ,Xn], with Deg(g) = k ≥ 0. Let S be a finite, non-
empty subset ofD. Show that the number of elements (x1, . . . , xn) ∈ S×n such that
g(x1, . . . , xn) = 0 is at most k|S|n−1.

7.3 Ideals and quotient rings
Definition 7.16. Let R be a ring. An ideal of R is an additive subgroup I of R
such that ar ∈ I for all a ∈ I and r ∈ R (i.e., I is closed under multiplication by
elements of R).

Expanding the above definition, we see that a non-empty subset I of R is an
ideal of R if and only if for all a, b ∈ I and r ∈ R, we have

a + b ∈ I , −a ∈ I , and ar ∈ I .

Since R is commutative, the condition ar ∈ I is equivalent to ra ∈ I . The condi-
tion −a ∈ I is redundant, as it is implied by the condition ar ∈ I with r := −1R.
In the case when R is the ring Z, this definition of an ideal is consistent with that
given in §1.2.

Clearly, {0R} andR are ideals ofR. From the fact that an ideal I is closed under
multiplication by elements of R, it is easy to see that I = R if and only if 1R ∈ I .

Example 7.33. For each m ∈ Z, the set mZ is not only an additive subgroup of the
ring Z, it is also an ideal of this ring. 2

Example 7.34. For each m ∈ Z, the set mZn is not only an additive subgroup of
the ring Zn, it is also an ideal of this ring. 2

Example 7.35. In the previous two examples, we saw that for some rings, the
notion of an additive subgroup coincides with that of an ideal. Of course, that is
the exception, not the rule. Consider the ring of polynomials R[X ]. Suppose g is a
non-zero polynomial in R[X ]. The additive subgroup generated by g contains only
polynomials whose degrees are at most that of g. However, this subgroup is not an
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ideal, since every ideal containing g must also contain g ·X i for all i ≥ 0, and must
therefore contain polynomials of arbitrarily high degree. 2

Example 7.36. Let R be a ring and x ∈ R. Consider the set

I := {g ∈ R[X ] : g(x) = 0}.

It is not hard to see that I is an ideal ofR[X ]. Indeed, for all g, h ∈ I and q ∈ R[X ],
we have

(g + h)(x) = g(x) + h(x) = 0 + 0 = 0 and (gq)(x) = g(x)q(x) = 0 · q(x) = 0.

Moreover, by Theorem 7.12, we have I = {(X − x)q : q ∈ R[X ]}. 2

We next develop some general constructions of ideals.

Theorem 7.17. Let R be a ring and let a ∈ R. Then aR := {ar : r ∈ R} is an
ideal of R.

Proof. This is an easy calculation. For all ar, ar′ ∈ aR and r′′ ∈ R, we have
ar + ar′ = a(r + r′) ∈ aR and (ar)r′′ = a(rr′′) ∈ aR. 2

The ideal aR in the previous theorem is called the ideal of R generated by a.
An ideal of this form is called a principal ideal. Since R is commutative, one
could also write this ideal as Ra := {ra : r ∈ R}. This ideal is the smallest ideal
of R containing a; that is, aR contains a, and every ideal of R that contains a must
contain everything in aR.

Corresponding to Theorems 6.11 and 6.12, we have:

Theorem 7.18. If I1 and I2 are ideals of a ring R, then so are I1 + I2 and I1 ∩ I2.

Proof. We already know that I1 + I2 and I1 ∩ I2 are additive subgroups of R, so
it suffices to show that they are closed under multiplication by elements of R. The
reader may easily verify that this is the case. 2

Let a1, . . . , ak be elements of a ring R. The ideal a1R + · · · + akR is called the
ideal of R generated by a1, . . . , ak. When the ring R is clear from context, one
often writes (a1, . . . , ak) to denote this ideal. This ideal is that smallest ideal of R
containing a1, . . . , ak.

Example 7.37. Let n be a positive integer, and let x be any integer. Define
I := {g ∈ Z[X ] : g(x) ≡ 0 (mod n)}. We claim that I is the ideal (X − x, n)
of Z[X ]. To see this, consider any fixed g ∈ Z[X ]. Using Theorem 7.12, we have
g = (X − x)q + g(x) for some q ∈ Z[X ]. Using the division with remainder
property for integers, we have g(x) = nq′ + r for some r ∈ {0, . . . , n − 1} and
q′ ∈ Z. Thus, g(x) ≡ r (mod n), and if g(x) ≡ 0 (mod n), then we must have
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r = 0, and hence g = (X − x)q + nq′ ∈ (X − x, n). Conversely, if g ∈ (X − x, n),
we can write g = (X − x)q + nq′ for some q, q′ ∈ Z[X ], and from this, it is clear
that g(x) = nq′(x) ≡ 0 (mod n). 2

Let I be an ideal of a ringR. Since I is an additive subgroup ofR, we may adopt
the congruence notation in §6.3, writing a ≡ b (mod I) to mean a− b ∈ I , and we
can form the additive quotient groupR/I of cosets. Recall that for a ∈ R, the coset
of I containing a is denoted [a]I , and that [a]I = a + I = {a + x : x ∈ I}. Also
recall that addition inR/I was defined in terms of addition of coset representatives;
that is, for a, b ∈ I , we defined

[a]I + [b]I := [a + b]I .

Theorem 6.16 ensured that this definition was unambiguous.
Our goal now is to make R/I into a ring by similarly defining multiplication in

R/I in terms of multiplication of coset representatives. To do this, we need the
following multiplicative analog of Theorem 6.16, which exploits in an essential
way the fact that an ideal is closed under multiplication by elements of R; in fact,
this is one of the main motivations for defining the notion of an ideal as we did.

Theorem 7.19. Suppose I is an ideal of a ring R. For all a, a′, b, b′ ∈ R, if
a ≡ a′ (mod I) and b ≡ b′ (mod I), then ab ≡ a′b′ (mod I).

Proof. If a = a′ + x for some x ∈ I and b = b′ + y for some y ∈ I , then
ab = a′b′+a′y+b′x+xy. Since I is closed under multiplication by elements of R,
we see that a′y, b′x, xy ∈ I , and since I is closed under addition, a′y+b′x+xy ∈ I .
Hence, ab − a′b′ ∈ I . 2

Using this theorem we can now unambiguously define multiplication on R/I as
follows: for a, b ∈ R,

[a]I · [b]I := [ab]I .

Once that is done, it is straightforward to verify that all the properties that make
R a ring are inherited by R/I — we leave the details of this to the reader. The
multiplicative identity of R/I is the coset [1R]I .

The ring R/I is called the quotient ring or residue class ring of R modulo I .
Elements of R/I may be called residue classes.

Note that if I = dR, then a ≡ b (mod I) if and only if d | (a−b), and as a matter
of notation, one may simply write this congruence as a ≡ b (mod d). We may also
write [a]d instead of [a]I .

Finally, note that if I = R, then R/I is the trivial ring.

Example 7.38. For each n ≥ 1, the ring Zn is precisely the quotient ring Z/nZ. 2



188 Rings

Example 7.39. Let f be a polynomial over a ring R with deg(f ) = ` ≥ 0 and
lc(f ) ∈ R∗, and consider the quotient ring E := R[X ]/fR[X ]. By the division
with remainder property for polynomials (Theorem 7.10), for every g ∈ R[X ],
there exists a unique polynomial h ∈ R[X ] such that g ≡ h (mod f ) and deg(h) < `.
From this, it follows that every element ofE can be written uniquely as [h]f , where
h ∈ R[X ] is a polynomial of degree less than `. Note that in this situation, we will
generally prefer the more compact notation R[X ]/(f ), instead of R[X ]/fR[X ]. 2

Example 7.40. Consider the polynomial f := X 2+X +1 ∈ Z2[X ] and the quotient
ring E := Z2[X ]/(f ). Let us name the elements of E as follows:

00 := [0]f , 01 := [1]f , 10 := [X ]f , 11 := [X + 1]f .

With this naming convention, addition of two elements in E corresponds to just
computing the bit-wise exclusive-or of their names. More precisely, the addition
table for E is the following:

+ 00 01 10 11

00 00 01 10 11
01 01 00 11 10
10 10 11 00 01
11 11 10 01 00

Note that 00 acts as the additive identity for E, and that as an additive group, E is
isomorphic to the additive group Z2 × Z2.

As for multiplication in E, one has to compute the product of two polynomials,
and then reduce modulo f . For example, to compute 10 · 11, using the identity
X 2 ≡ X + 1 (mod f ), one sees that

X · (X + 1) ≡ X 2 + X ≡ (X + 1) + X ≡ 1 (mod f );

thus, 10 · 11 = 01. The reader may verify the following multiplication table for E:

· 00 01 10 11

00 00 00 00 00
01 00 01 10 11
10 00 10 11 01
11 00 11 01 10

Observe that 01 acts as the multiplicative identity forE. Notice that every non-zero
element of E has a multiplicative inverse, and so E is in fact a field. Observe that
E∗ is cyclic: the reader may verify that both 10 and 11 have multiplicative order 3.

This is the first example we have seen of a finite field whose cardinality is not
prime. 2
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EXERCISE 7.25. Show that if F is a field, then the only ideals of F are {0F } and
F .

EXERCISE 7.26. Let a, b be elements of a ring R. Show that

a | b ⇐⇒ b ∈ aR ⇐⇒ bR ⊆ aR.

EXERCISE 7.27. Let R be a ring. Show that if I is a non-empty subset of R[X ]
that is closed under addition, multiplication by elements of R, and multiplication
by X , then I is an ideal of R[X ].

EXERCISE 7.28. Let I be an ideal of R, and S a subring of R. Show that I ∩S is
an ideal of S.

EXERCISE 7.29. Let I be an ideal of R, and S a subring of R. Show that I +S is
a subring of R, and that I is an ideal of I + S.

EXERCISE 7.30. Let I1 be an ideal ofR1, and I2 an ideal ofR2. Show that I1×I2

is an ideal of R1 × R2.

EXERCISE 7.31. Write down the multiplication table for Z2[X ]/(X 2 + X ). Is this
a field?

EXERCISE 7.32. Let I be an ideal of a ring R, and let x and y be elements of R
with x ≡ y (mod I). Let g ∈ R[X ]. Show that g(x) ≡ g(y) (mod I).

EXERCISE 7.33. Let R be a ring, and fix x1, . . . , xn ∈ R. Let

I := {g ∈ R[X1, . . . ,Xn] : g(x1, . . . , xn) = 0}.

Show that I is an ideal of R[X1, . . . ,Xn], and that I = (X1 − x1, . . . ,Xn − xn).

EXERCISE 7.34. Let p be a prime, and consider the ring Q(p) (see Example 7.26).
Show that every non-zero ideal of Q(p) is of the form (pi), for some uniquely deter-
mined integer i ≥ 0.

EXERCISE 7.35. Let p be a prime. Show that in the ring Z[X ], the ideal (X , p) is
not a principal ideal.

EXERCISE 7.36. Let F be a field. Show that in the ring F [X ,Y ], the ideal (X ,Y )
is not a principal ideal.

EXERCISE 7.37. LetR be a ring, and let {Ii}∞i=0 be a sequence of ideals ofR such
that Ii ⊆ Ii+1 for all i = 0, 1, 2, . . . . Show that the union

⋃∞
i=0 Ii is also an ideal of

R.

EXERCISE 7.38. Let R be a ring. An ideal I of R is called prime if I ( R and if



190 Rings

for all a, b ∈ R, ab ∈ I implies a ∈ I or b ∈ I . An ideal I of R is called maximal
if I ( R and there are no ideals J of R such that I ( J ( R. Show that:

(a) an ideal I of R is prime if and only if R/I is an integral domain;

(b) an ideal I of R is maximal if and only if R/I is a field;

(c) all maximal ideals of R are also prime ideals.

EXERCISE 7.39. This exercise explores some examples of prime and maximal
ideals. Show that:

(a) in the ring Z, the ideal {0} is prime but not maximal, and that the maximal
ideals are precisely those of the form pZ, where p is prime;

(b) in an integral domain D, the ideal {0} is prime, and this ideal is maximal if
and only if D is a field;

(c) if p is a prime, then in the ring Z[X ], the ideal (X , p) is maximal, while the
ideals (X ) and (p) are prime, but not maximal;

(d) if F is a field, then in the ring F [X ,Y ], the ideal (X ,Y ) is maximal, while
the ideals (X ) and (Y ) are prime, but not maximal.

EXERCISE 7.40. It is a fact that every non-trivial ring R contain at least one max-
imal ideal. Showing this in general requires some fancy set-theoretic notions. This
exercise develops a simple proof in the case where R is countable (see §A3).

(a) Show that if R is non-trivial but finite, then it contains a maximal ideal.

(b) Assume thatR is countably infinite, and let a1, a2, a3, . . . be an enumeration
of the elements of R. Define a sequence of ideals I0, I1, I2, . . . , as follows.
Set I0 := {0R}, and for each i ≥ 0, define

Ii+1 :=
{

Ii + aiR if Ii + aiR ( R;
Ii otherwise.

Finally, set I :=
⋃∞
i=0 Ii, which by Exercise 7.37 is an ideal of R. Show

that I is a maximal ideal of R. Hint: first, show that I ( R by assuming
that 1R ∈ I and deriving a contradiction; then, show that I is maximal
by assuming that for some i = 1, 2, . . . , we have I ( I + aiR ( R, and
deriving a contradiction.

EXERCISE 7.41. Let R be a ring, and let I and J be ideals of R. With the ring-
theoretic product as defined in Exercise 7.2, show that:

(a) IJ is an ideal;

(b) if I and J are principal ideals, with I = aR and J = bR, then IJ = abR,
and so is also a principal ideal;

(c) IJ ⊆ I ∩ J ;
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(d) if I + J = R, then IJ = I ∩ J .

EXERCISE 7.42. Let R be a subring of E, and I an ideal of R. Show that the
ring-theoretic product IE is an ideal of E that contains I , and is the smallest such
ideal.

EXERCISE 7.43. Let M be a maximal ideal of a ring R, and let a, b ∈ R. Show
that if ab ∈ M2 and b /∈ M , then a ∈ M2. Here, M2 := MM , the ring-theoretic
product.

EXERCISE 7.44. Let F be a field, let f ∈ F [X ,Y ], and let E := F [X ,Y ]/(f ).
Define V (f ) := {(x, y) ∈ F × F : f (x, y) = 0}.

(a) Every element α of E naturally defines a function from V (f ) to F , as fol-
lows: if α = [g]f , with g ∈ F [X ,Y ], then for P = (x, y) ∈ V (f ), we
define α(P ) := g(x, y). Show that this definition is unambiguous, that is,
g ≡ h (mod f ) implies g(x, y) = h(x, y).

(b) For P = (x, y) ∈ V (f ), define MP := {α ∈ E : α(P ) = 0}. Show that MP

is a maximal ideal of E, and that MP = µE + νE, where µ := [X − x]f
and ν := [Y − y]f .

EXERCISE 7.45. Continuing with the previous exercise, now assume that the char-
acteristic of F is not 2, and that f = Y 2 − φ, where φ ∈ F [X ] is a non-zero
polynomial with no multiple roots in F (see definitions after Exercise 7.18).

(a) Show that if P = (x, y) ∈ V (f ), then so is P := (x,−y), and that
P = P ⇐⇒ y = 0 ⇐⇒ φ(x) = 0.

(b) Let P = (x, y) ∈ V (f ) and µ := [X − x]f ∈ E. Show that µE = MPMP

(the ring-theoretic product). Hint: use Exercise 7.43, and treat the cases
P = P and P 6= P separately.

EXERCISE 7.46. Let R be a ring, and I an ideal of R. Define Rad(I) to be the set
of all a ∈ R such that an ∈ I for some positive integer n.

(a) Show that Rad(I) is an ideal of R containing I . Hint: show that if an ∈ I
and bm ∈ I , then (a + b)n+m ∈ I .

(b) Show that if R = Z and I = (d), where d = p
e1
1 · · · p

er
r is the prime factor-

ization of d, then Rad(I) = (p1 · · · pr).
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7.4 Ring homomorphisms and isomorphisms
Definition 7.20. A function ρ from a ring R to a ring R′ is called a ring homo-
morphism if

(i) ρ is a group homomorphism with respect to the underlying additive groups
of R and R′,

(ii) ρ(ab) = ρ(a)ρ(b) for all a, b ∈ R, and

(iii) ρ(1R) = 1R′ .

Expanding the definition, the requirements that ρ must satisfy in order to be a
ring homomorphism are that for all a, b ∈ R, we have ρ(a + b) = ρ(a) + ρ(b) and
ρ(ab) = ρ(a)ρ(b), and that ρ(1R) = 1R′ .

Note that some texts do not require that a ring homomorphism satisfies part (iii)
of our definition (which is not redundant — see Examples 7.49 and 7.50 below).
Since a ring homomorphism is also an additive group homomorphism, we use the
same notation and terminology for image and kernel.

Example 7.41. If S is a subring of a ring R, then the inclusion map i : S → R is
obviously a ring homomorphism. 2

Example 7.42. Suppose I is an ideal of a ring R. Analogous to Example 6.36, we
may define the natural map from the ring R to the quotient ring R/I as follows:

ρ : R → R/I

a 7→ [a]I .

Not only is this a surjective homomorphism of additive groups, with kernel I , it is
a ring homomorphism. Indeed, we have

ρ(ab) = [ab]I = [a]I · [b]I = ρ(a) · ρ(b),

and ρ(1R) = [1R]I , which is the multiplicative identity in R/I . 2

Example 7.43. For a given positive integer n, the natural map from Z to Zn sends
a ∈ Z to the residue class [a]n. This is a surjective ring homomorphism, whose
kernel is nZ. 2

Example 7.44. Let R be a subring of a ring E, and fix α ∈ E. The polynomial
evaluation map

ρ : R[X ]→ E

g 7→ g(α)

is a ring homomorphism (see Theorem 7.11). The image of ρ consists of all poly-
nomial expressions in α with coefficients in R, and is denoted R[α]. As the reader
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may verify, R[α] is a subring of E containing α and all of R, and is the smallest
such subring of E. 2

Example 7.45. We can generalize the previous example to multi-variate polyno-
mials. If R is a subring of a ring E and α1, . . . , αn ∈ E, then the map

ρ : R[X1, . . . ,Xn]→ E

g 7→ g(α1, . . . , αn)

is a ring homomorphism. Its image consists of all polynomial expressions in
α1, . . . , αn with coefficients in R, and is denoted R[α1, . . . , αn]. Moreover, this
image is a subring of E containing α1, . . . , αn and all of R, and is the smallest such
subring of E. Note that R[α1, . . . , αn] = R[α1, . . . , αn−1][αn]. 2

Example 7.46. Let ρ : R → R′ be a ring homomorphism. We can extend the
domain of definition of ρ from R to R[X ] by defining ρ(

∑

i aiX
i) :=

∑

i ρ(ai)X i.
This yields a ring homomorphism from R[X ] into R′[X ]. To verify this, suppose
g =

∑

i aiX
i and h =

∑

i biX
i are polynomials in R[X ]. Let s := g + h ∈ R[X ] and

p := gh ∈ R[X ], and write s =
∑

i siX
i and p =

∑

i piX
i, so that

si = ai + bi and pi =
∑

i=j+k

ajbk.

Then we have

ρ(si) = ρ(ai + bi) = ρ(ai) + ρ(bi),

which is the coefficient of X i in ρ(g) + ρ(h), and

ρ(pi) = ρ
(

∑

i=j+k

ajbk

)

=
∑

i=j+k

ρ(ajbk) =
∑

i=j+k

ρ(aj)ρ(bk),

which is the coefficient of X i in ρ(g)ρ(h).
Sometimes a more compact notation is convenient: we may prefer to write a for

the image of a ∈ R under ρ, and if we do this, then for g =
∑

i aiX
i ∈ R[X ], we

write g for the image
∑

i aiX
i of g under the extension of ρ to R[X ]. 2

Example 7.47. Consider the natural map that sends a ∈ Z to a := [a]n ∈ Zn (see
Example 7.43). As in the previous example, we may extend this to a ring homomor-
phism from Z[X ] to Zn[X ] that sends g =

∑

i aiX
i ∈ Z[X ] to g =

∑

i aiX
i ∈ Zn[X ].

This homomorphism is clearly surjective. Let us determine its kernel. Observe that
if g =

∑

i aiX
i, then g = 0 if and only if n | ai for each i; therefore, the kernel is

the ideal nZ[X ] of Z[X ]. 2
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Example 7.48. Let R be a ring of prime characteristic p. For all a, b ∈ R, we have
(see Exercise 7.1)

(a + b)p =
p
∑

k=0

(

p

k

)

ap−kbk.

However, by Exercise 1.14, all of the binomial coefficients are multiples of p,
except for k = 0 and k = p, and hence in the ring R, all of these terms vanish,
leaving us with

(a + b)p = ap + bp.

This result is often jokingly referred to as the “freshman’s dream,” for somewhat
obvious reasons.

Of course, as always, we have

(ab)p = apbp and 1pR = 1R,

and so it follows that the map that sends a ∈ R to ap ∈ R is a ring homomorphism
from R into R. 2

Example 7.49. Suppose R is a non-trivial ring, and let ρ : R → R map everything
in R to 0R. Then ρ satisfies parts (i) and (ii) of Definition 7.20, but not part (iii). 2

Example 7.50. In special situations, part (iii) of Definition 7.20 may be redundant.
One such situation arises when ρ : R → R′ is surjective. In this case, we know that
1R′ = ρ(a) for some a ∈ R, and by part (ii) of the definition, we have

ρ(1R) = ρ(1R) · 1R′ = ρ(1R)ρ(a) = ρ(1R · a) = ρ(a) = 1R′ . 2

For a ring homomorphism ρ : R → R′, all of the results of Theorem 6.19 apply.
In particular, ρ(0R) = 0R′ , ρ(a) = ρ(b) if and only if a ≡ b (mod Ker ρ), and ρ is
injective if and only if Ker ρ = {0R}. However, we may strengthen Theorem 6.19
as follows:

Theorem 7.21. Let ρ : R → R′ be a ring homomorphism.
(i) If S is a subring of R, then ρ(S) is a subring of R′; in particular (setting

S := R), Im ρ is a subring of R′.
(ii) If S ′ is a subring of R′, then ρ−1(S ′) is a subring of R.
(ii) If I is an ideal of R, then ρ(I) is an ideal of Im ρ.
(iv) If I ′ is an ideal of Im ρ, then ρ−1(I ′) is an ideal of R; in particular (setting

I ′ := {0R′}), Ker ρ is an ideal of R.

Proof. In each part, we already know that the relevant object is an additive sub-
group, and so it suffices to show that the appropriate additional properties are sat-
isfied.
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(i) For all a, b ∈ S, we have ab ∈ S, and hence ρ(S) contains ρ(ab) = ρ(a)ρ(b).
Also, 1R ∈ S, and hence ρ(S) contains ρ(1R) = 1R′ .

(ii) If ρ(a) ∈ S ′ and ρ(b) ∈ S ′, then ρ(ab) = ρ(a)ρ(b) ∈ S ′. Moreover,
ρ(1R) = 1R′ ∈ S ′.

(iii) For all a ∈ I and r ∈ R, we have ar ∈ I , and hence ρ(I) contains
ρ(ar) = ρ(a)ρ(r).

(iv) For all a ∈ ρ−1(I ′) and r ∈ R, we have ρ(ar) = ρ(a)ρ(r), and since ρ(a)
belongs to the ideal I ′, so does ρ(a)ρ(r), and hence ρ−1(I ′) contains ar. 2

Theorems 6.20 and 6.21 have natural ring analogs — one only has to show that
the corresponding group homomorphisms satisfy the additional requirements of a
ring homomorphism, which we leave to the reader to verify:

Theorem 7.22. If ρ : R → R′ and ρ′ : R′ → R′′ are ring homomorphisms, then
so is their composition ρ′ ◦ ρ : R → R′′.

Theorem 7.23. Let ρi : R → R′i, for i = 1, . . . , k, be ring homomorphisms. Then
the map

ρ : R → R′1 × · · · ×R
′
k

a 7→ (ρ1(a), . . . , ρk(a))

is a ring homomorphism.

If a ring homomorphism ρ : R → R′ is a bijection, then it is called a ring
isomorphism of R with R′. If such a ring isomorphism ρ exists, we say that R is
isomorphic to R′, and write R ∼= R′. Moreover, if R = R′, then ρ is called a ring
automorphism on R.

Analogous to Theorem 6.22, we have:

Theorem 7.24. If ρ is a ring isomorphism of R with R′, then the inverse function
ρ−1 is a ring isomorphism of R′ with R.

Proof. Exercise. 2

Because of this theorem, if R is isomorphic to R′, we may simply say that “R
and R′ are isomorphic.” We stress that a ring isomorphism is essentially just a
“renaming” of elements; in particular, we have:

Theorem 7.25. Let ρ : R → R′ be a ring isomorphism.

(i) For all a ∈ R, a is a zero divisor if and only if ρ(a) is a zero divisor.

(ii) For all a ∈ R, a is a unit if and only if ρ(a) is a unit.

(iii) The restriction of R to R∗ is a group isomorphism of R∗ with (R′)∗.



196 Rings

Proof. Exercise. 2

An injective ring homomorphism ρ : R → E is called an embedding of R in E.
In this case, Im ρ is a subring of E and R ∼= Im ρ. If the embedding is a natural one
that is clear from context, we may simply identify elements of R with their images
in E under the embedding; that is, for a ∈ R, we may simply write “a,” and it is
understood that this really means “ρ(a)” if the context demands an element of E.
As a slight abuse of terminology, we shall say that R is a subring of E. Indeed,
by appropriately renaming elements, we can always make R a subring of E in the
literal sense of the term.

This practice of identifying elements of a ring with their images in another ring
under a natural embedding is very common. We have already seen an example of
this, namely, when we formally defined the ring of polynomials R[X ] over R in
§7.2.1, we defined the map ε0 : R → R[X ] that sends c ∈ R to the polynomial
whose constant term is c, with all other coefficients zero. This map ε0 is an embed-
ding, and it was via this embedding that we identified elements of R with elements
of R[X ], and so viewed R as a subring of R[X ]. We shall see more examples of
this later (in particular, Example 7.55 below).

Theorems 6.23 and 6.24 also have natural ring analogs—again, one only has to
show that the corresponding group homomorphisms are also ring homomorphisms:

Theorem 7.26 (First isomorphism theorem). Let ρ : R → R′ be a ring homo-
morphism with kernel K and image S ′. Then we have a ring isomorphism

R/K ∼= S ′.

Specifically, the map

ρ : R/K → R′

[a]K 7→ ρ(a)

is an injective ring homomorphism whose image is S ′.

Theorem 7.27. Let ρ : R → R′ be a ring homomorphism. Then for every ideal I
of R with I ⊆ Ker ρ, we may define a ring homomorphism

ρ : R/I → R′

[a]I 7→ ρ(a).

Moreover, Im ρ = Im ρ, and ρ is injective if and only if I = Ker ρ.

Example 7.51. Returning again to the Chinese remainder theorem and the discus-
sion in Example 6.48, if {ni}ki=1 is a pairwise relatively prime family of positive
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integers, and n :=
∏k

i=1 ni, then the map

ρ : Z→ Zn1 × · · · × Znk
a 7→ ([a]n1 , . . . , [a]nk )

is not just a surjective group homomorphism with kernel nZ, it is also a ring homo-
morphism. Applying Theorem 7.26, we get a ring isomorphism

ρ : Zn → Zn1 × · · · × Znk
[a]n 7→ ([a]n1 , . . . , [a]nk ),

which is the same function as the function θ in Theorem 2.8. By part (iii) of
Theorem 7.25, the restriction of θ to Z∗n is a group isomorphism of Z∗n with the
multiplicative group of units of Zn1×· · ·×Znk , which (according to Example 7.15)
is Z∗n1

× · · · ×Z∗nk . Thus, part (iii) of Theorem 2.8 is an immediate consequence of
the above observations. 2

Example 7.52. Extending Example 6.49, if n1 and n2 are positive integers with
n1 | n2, then the map

ρ : Zn2 → Zn1

[a]n2 7→ [a]n1

is a surjective ring homomorphism. 2

Example 7.53. For a ring R, consider the map ρ : Z → R that sends m ∈ Z
to m · 1R in R. It is easily verified that ρ is a ring homomorphism. Since Ker ρ
is an ideal of Z, it is either {0} or of the form nZ for some n > 0. In the first
case, if Ker ρ = {0}, then Im ρ ∼= Z, and so the ring Z is embedded in R, and R
has characteristic zero. In the second case, if Ker ρ = nZ for some n > 0, then
by Theorem 7.26, Im ρ ∼= Zn, and so the ring Zn is embedded in R, and R has
characteristic n.

Note that Im ρ is the smallest subring of R: any subring of R must contain 1R
and be closed under addition and subtraction, and so must contain Im ρ. 2

Example 7.54. We can generalize Example 7.44 by evaluating polynomials at sev-
eral points. This is most fruitful when the underlying coefficient ring is a field, and
the evaluation points belong to the same field. So let F be a field, and let x1, . . . , xk
be distinct elements of F . Define the map

ρ : F [X ]→ F×k

g 7→ (g(x1), . . . , g(xk)).

This is a ring homomorphism (as seen by applying Theorem 7.23 to the polynomial
evaluation maps at the points x1, . . . , xk). By Theorem 7.13, Ker ρ = (f ), where
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f :=
∏k

i=1(X −xi). By Theorem 7.15, ρ is surjective. Therefore, by Theorem 7.26,
we get a ring isomorphism

ρ : F [X ]/(f ) → F×k

[g]f 7→ (g(x1), . . . , g(xk)). 2

Example 7.55. As in Example 7.39, let f be a polynomial over a ring R with
deg(f ) = ` and lc(f ) ∈ R∗, but now assume that ` > 0. Consider the natural
map ρ from R[X ] to the quotient ring E := R[X ]/(f ) that sends g ∈ R[X ] to
[g]f . Let τ be the restriction of ρ to the subring R of R[X ]. Evidently, τ is a ring
homomorphism from R into E. Moreover, since distinct polynomials of degree
less than ` belong to distinct residue classes modulo f , we see that τ is injective.
Thus, τ is an embedding of R into E. As τ is a very natural embedding, we can
identify elements of R with their images in E under τ, and regard R as a subring
of E. Taking this point of view, we see that if g =

∑

i aiX
i, then

[g]f =
[

∑

i

aiX
i
]

f
=
∑

i

[ai]f ([X ]f )i =
∑

i

aiξ
i = g(ξ),

where ξ := [X ]f ∈ E. Therefore, the natural map ρ may be viewed as the polyno-
mial evaluation map (see Example 7.44) that sends g ∈ R[X ] to g(ξ) ∈ E.

Note that we have E = R[ξ]; moreover, every element of E can be expressed
uniquely as g(ξ) for some g ∈ R[X ] of degree less than `, and more generally, for
arbitrary g, h ∈ R[X ], we have g(ξ) = h(ξ) if and only if g ≡ h (mod f ). Finally,
note that f (ξ) = [f ]f = [0]f ; that is, ξ is a root of f . 2

Example 7.56. As a special case of Example 7.55, let f := X 2 + 1 ∈ R[X ],
and consider the quotient ring R[X ]/(f ). If we set i := [X ]f ∈ R[X ]/(f ), then
every element of R[X ]/(f ) can be expressed uniquely as a + bi, where a, b ∈ R.
Moreover, we have i2 = −1, and more generally, for all a, b, a′, b′ ∈ R, we have

(a + bi) + (a′ + b′i) = (a + a′) + (b + b′)i

and

(a + bi) · (a′ + b′i) = (aa′ − bb′) + (ab′ + a′b)i.

Thus, the rules for arithmetic in R[X ]/(f ) are precisely the familiar rules of com-
plex arithmetic, and so C and R[X ]/(f ) are essentially the same, as rings. Indeed,
the “algebraically correct” way of defining the field of complex numbers C is sim-
ply to define it to be the quotient ring R[X ]/(f ) in the first place. This will be our
point of view from now on. 2
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Example 7.57. Consider the polynomial evaluation map

ρ : R[X ]→ C = R[X ]/(X 2 + 1)

g 7→ g(−i).

For every g ∈ R[X ], we may write g = (X 2 + 1)q + a + bX , where q ∈ R[X ] and
a, b ∈ R. Since (−i)2 + 1 = i2 + 1 = 0, we have

g(−i) = ((−i)2 + 1)q(−i) + a − bi = a − bi.

Clearly, then, ρ is surjective and the kernel of ρ is the ideal of R[X ] generated by
the polynomial X 2 + 1. By Theorem 7.26, we therefore get a ring automorphism ρ

on C that sends a+ bi ∈ C to a− bi. In fact, ρ is none other than the complex con-
jugation map. Indeed, this is the “algebraically correct” way of defining complex
conjugation in the first place. 2

Example 7.58. We defined the ring Z[i] of Gaussian integers in Example 7.25 as
a subring of C. Let us verify that the notation Z[i] introduced in Example 7.25 is
consistent with that introduced in Example 7.44. Consider the polynomial evalua-
tion map ρ : Z[X ] → C that sends g ∈ Z[X ] to g(i) ∈ C. For every g ∈ Z[X ], we
may write g = (X 2 + 1)q + a+ bX , where q ∈ Z[X ] and a, b ∈ Z. Since i2 + 1 = 0,
we have g(i) = (i2 + 1)q(i) + a + bi = a + bi. Clearly, then, the image of ρ is
the set {a + bi : a, b ∈ Z}, and the kernel of ρ is the ideal of Z[X ] generated by
the polynomial X 2 + 1. This shows that Z[i] in Example 7.25 is the same as Z[i]
in Example 7.44, and moreover, Theorem 7.26 implies that Z[i] is isomorphic to
Z[X ]/(X 2 + 1).

Therefore, we can directly construct the Gaussian integers as the quotient ring
Z[X ]/(X 2 + 1). Likewise the field Q[i] (see Exercise 7.14) can be constructed
directly as Q[X ]/(X 2 + 1). 2

Example 7.59. Let p be a prime, and consider the quotient ring E := Zp[X ]/(f ),
where f := X 2 +1. If we set i := [X ]f ∈ E, then E = Zp[i] = {a+bi : a, b ∈ Zp}.
In particular, E is a ring of cardinality p2. Moreover, we have i2 = −1, and the
rules for addition and multiplication in E look exactly the same as they do in C:
for all a, b, a′, b′ ∈ Zp, we have

(a + bi) + (a′ + b′i) = (a + a′) + (b + b′)i

and

(a + bi) · (a′ + b′i) = (aa′ − bb′) + (ab′ + a′b)i.

The ring E may or may not be a field. We now determine for which primes p we
get a field.
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If p = 2, then 0 = 1+ i2 = (1+ i)2 (see Example 7.48), and so in this case, 1+ i
is a zero divisor and E is not a field.

Now suppose p is odd. There are two subcases to consider: p ≡ 1 (mod 4) and
p ≡ 3 (mod 4).

Suppose p ≡ 1 (mod 4). By Theorem 2.31, there exists c ∈ Zp such that
c2 = −1, and therefore f = X 2 + 1 = X 2 − c2 = (X − c)(X + c), and by Exam-
ple 7.45, we have a ring isomorphism E ∼= Zp × Zp (which maps a + bi ∈ E to
(a + bc, a − bc) ∈ Zp × Zp); in particular, E is not a field. Indeed, c + i is a zero
divisor, since (c + i)(c − i) = c2 − i2 = c2 + 1 = 0.

Suppose p ≡ 3 (mod 4). By Theorem 2.31, there is no c ∈ Zp such that c2 = −1.
It follows that for all a, b ∈ Zp, not both zero, we must have a2 + b2 6= 0; indeed,
suppose that a2 + b2 = 0, and that, say, b 6= 0; then we would have (a/b)2 = −1,
contradicting the assumption that −1 has no square root in Zp. Therefore, a2 + b2

has a multiplicative inverse in Zp, from which it follows that the formula for mul-
tiplicative inverses in C applies equally well in E; that is,

(a + bi)−1 =
a − bi
a2 + b2

.

Therefore, in this case, E is a field. 2

In Example 7.40, we saw a finite field of cardinality 4. The previous example
provides us with an explicit construction of a finite field of cardinality p2, for every
prime p congruent to 3 modulo 4. As the next example shows, there exist finite
fields of cardinality p2 for all primes p.

Example 7.60. Let p an odd prime, and let d ∈ Z∗p. Let f := X 2 − d ∈ Zp[X ],
and consider the ring E := Zp[X ]/(f ) = Zp[ξ], where ξ := [X ]f ∈ E. We have
E = {a + bξ : a, b ∈ Zp} and |E| = p2. Note that ξ2 = d, and the general rules for
arithmetic in E look like this: for all a, b, a′, b′ ∈ Zp, we have

(a + bξ) + (a′ + b′ξ) = (a + a′) + (b + b′)ξ

and

(a + bξ) · (a′ + b′ξ) = (aa′ + bb′d) + (ab′ + a′b)ξ.

Suppose that d ∈ (Z∗p)2, so that d = c2 for some c ∈ Z∗p. Then f = (X−c)(X+c),
and like in previous example, we have a ring isomorphism E ∼= Zp × Zp (which
maps a + bξ ∈ E to (a + bc, a − bc) ∈ Zp × Zp); in particular, E is not a field.

Suppose that d /∈ (Z∗p)2. This implies that for all a, b ∈ Zp, not both zero, we
have a2 − b2d 6= 0. Using this, we get the following formula for multiplicative
inverses in E:

(a + bξ)−1 =
a − bξ
a2 − b2d

.
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Therefore, E is a field in this case.
By Theorem 2.20, we know that |(Z∗p)2| = (p − 1)/2, and hence there exists

d ∈ Z∗p \ (Z∗p)2 for all odd primes p. Thus, we have a general (though not explicit)
construction for finite fields of cardinality p2 for all odd primes p. 2

EXERCISE 7.47. Show that if ρ : F → R is a ring homomorphism from a field F
into a ring R, then either R is trivial or ρ is injective. Hint: use Exercise 7.25.

EXERCISE 7.48. Verify that the “is isomorphic to” relation on rings is an equiva-
lence relation; that is, for all rings R1,R2,R3, we have:

(a) R1
∼= R1;

(b) R1
∼= R2 implies R2

∼= R1;

(c) R1
∼= R2 and R2

∼= R3 implies R1
∼= R3.

EXERCISE 7.49. Let ρi : Ri → R′i, for i = 1, . . . , k, be ring homomorphisms.
Show that the map

ρ : R1 × · · · ×Rk → R′1 × · · · × R
′
k

(a1, . . . , ak) 7→ (ρ1(a1), . . . , ρk(ak))

is a ring homomorphism.

EXERCISE 7.50. Let ρ : R → R′ be a ring homomorphism, and let a ∈ R. Show
that ρ(aR) = ρ(a)ρ(R).

EXERCISE 7.51. Let ρ : R → R′ be a ring homomorphism. Let S be a subring
of R, and let τ : S → R′ be the restriction of ρ to S. Show that τ is a ring
homomorphism and that Ker τ = Ker ρ ∩ S.

EXERCISE 7.52. Suppose R1, . . . ,Rk are rings. Show that for each i = 1, . . . , k,
the projection map πi : R1 × · · · × Rk → Ri that sends (a1, . . . , ak) to ai is a
surjective ring homomorphism.

EXERCISE 7.53. Show that if R = R1×R2 for rings R1 and R2, and I1 is an ideal
of R1 and I2 is an ideal of R2, then we have a ring isomorphism R/(I1 × I2) ∼=
R1/I1 × R2/I2.

EXERCISE 7.54. Let I be an ideal of R, and S a subring of R. As we saw in
Exercises 7.28, and 7.29, I ∩ S is an ideal of S, and I is an ideal of the subring
I + S. Show that we have a ring isomorphism (I + S)/I ∼= S/(I ∩ S).

EXERCISE 7.55. Let ρ : R → R′ be a ring homomorphism with kernel K. Let I
be an ideal of R. Show that we have a ring isomorphism R/(I +K) ∼= ρ(R)/ρ(I).
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EXERCISE 7.56. Let n be a positive integer, and consider the natural map that
sends a ∈ Z to a := [a]n ∈ Zn, which we may extend coefficient-wise to a ring
homomorphism from Z[X ] to Zn[X ], as in Example 7.47. Show that for every
f ∈ Z[X ], we have a ring isomorphism Z[X ]/(f , n) ∼= Zn[X ]/(f ).

EXERCISE 7.57. Let n be a positive integer. Show that we have ring isomorphisms
Z[X ]/(n) ∼= Zn[X ], Z[X ]/(X ) ∼= Z, and Z[X ]/(X , n) ∼= Zn.

EXERCISE 7.58. Let n = pq, where p and q are distinct primes. Show that we
have a ring isomorphism Zn[X ] ∼= Zp[X ] × Zq[X ].

EXERCISE 7.59. Let p be a prime with p ≡ 1 (mod 4). Show that we have a ring
isomorphism Z[X ]/(X 2 + 1, p) ∼= Zp × Zp.

EXERCISE 7.60. Let ρ : R → R′ be a surjective ring homomorphism. Let S be
the set of all ideals of R that contain Ker ρ, and let S ′ be the set of all ideals of
R′. Show that the sets S and S ′ are in one-to-one correspondence, via the map that
sends I ∈ S to ρ(I) ∈ S ′. Moreover, show that under this correspondence, prime
ideals in S correspond to prime ideals in S ′, and maximal ideals in S correspond
to maximal ideals in S ′. (See Exercise 7.38.)

EXERCISE 7.61. Let n be a positive integer whose factorization into primes is
n = p

e1
1 · · · p

er
r . What are the prime ideals of Zn? (See Exercise 7.38.)

EXERCISE 7.62. Let ρ : R → S be a ring homomorphism. Show that ρ(R∗) ⊆ S∗,
and that the restriction of ρ to R∗ yields a group homomorphism ρ∗ : R∗ → S∗.

EXERCISE 7.63. Let R be a ring, and let x1, . . . , xn be elements of R. Show that
the rings R and R[X1, . . . ,Xn]/(X1 − x1, . . . ,Xn − xn) are isomorphic.

EXERCISE 7.64. This exercise and the next generalize the Chinese remainder the-
orem to arbitrary rings. Suppose I and J are two ideals of a ring R such that
I + J = R. Show that the map ρ : R → R/I × R/J that sends a ∈ R to
([a]I , [a]J ) is a surjective ring homomorphism with kernel IJ (see Exercise 7.41).
Conclude that R/(IJ ) is isomorphic to R/I × R/J .

EXERCISE 7.65. Generalize the previous exercise, showing that R/(I1 · · · Ik) is
isomorphic to R/I1 × · · · × R/Ik, where R is a ring, and I1, . . . , Ik are ideals of
R, provided Ii + Ij = R for all i, j such that i 6= j.

EXERCISE 7.66. Let Q(m) be the subring of Q defined in Example 7.26. Let us
define the map ρ : Q(m) → Zm as follows. For a/b ∈ Q with b relatively prime
to m, ρ(a/b) := [a]m([b]m)−1. Show that ρ is unambiguously defined, and is a
surjective ring homomorphism. Also, describe the kernel of ρ.
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EXERCISE 7.67. Let R be a ring, a ∈ R∗, and b ∈ R. Define the map ρ : R[X ] →
R[X ] that sends g ∈ R[X ] to g

(

aX + b
)

. Show that ρ is a ring automorphism.

EXERCISE 7.68. Consider the subring Z[1/2] of Q. Show that Z[1/2] = {a/2i :
a, i ∈ Z, i ≥ 0}, that (Z[1/2])∗ = {2i : i ∈ Z}, and that every non-zero ideal of
Z[1/2] is of the form (m), for some uniquely determined, odd integer m.

7.5 The structure of Z∗n
We are now in a position to precisely characterize the structure of the group Z∗n, for
an arbitrary integer n > 1. This characterization will prove to be very useful in a
number of applications.

Suppose n = p
e1
1 · · · p

er
r is the factorization of n into primes. By the Chinese

remainder theorem (see Theorem 2.8 and Example 7.51), we have the ring isomor-
phism

θ : Zn → Zpe11
× · · · × Zperr

[a]n 7→ ([a]pe11
, . . . , [a]perr ),

and restricting θ to Z∗n yields a group isomorphism

Z∗n ∼= Z∗
p
e1
1
× · · · × Z∗

p
er
r

.

Thus, to determine the structure of the group Z∗n for general n, it suffices to deter-
mine the structure for n = pe, where p is prime. By Theorem 2.10, we already
know the order of the group Z∗pe , namely, ϕ(pe) = pe−1(p − 1), where ϕ is Euler’s
phi function.

The main result of this section is the following:

Theorem 7.28. If p is an odd prime, then for every positive integer e, the group
Z∗pe is cyclic. The group Z∗2e is cyclic for e = 1 or 2, but not for e ≥ 3. For e ≥ 3,
Z∗2e is isomorphic to the additive group Z2 × Z2e−2 .

In the case where e = 1, this theorem is a special case of the following, more
general, theorem:

Theorem 7.29. Let D be an integral domain and G a subgroup of D∗ of finite
order. Then G is cyclic.

Proof. Suppose G is not cyclic. If m is the exponent of G, then by Theorem 6.41,
we know that m < |G|. Moreover, by definition, am = 1 for all a ∈ G; that is, every
element of G is a root of the polynomial Xm − 1 ∈ D[X ]. But by Theorem 7.14, a
polynomial of degree m over an integral domain has at most m distinct roots, and
this contradicts the fact that m < |G|. 2
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This theorem immediately implies that Z∗p is cyclic for every prime p, since Zp
is a field; however, we cannot directly use this theorem to prove that Z∗pe is cyclic
for e > 1 (and p odd), because Zpe is not a field. To deal with the case e > 1, we
need a few simple facts.

Lemma 7.30. Let p be a prime. For every positive integer e, if a ≡ b (mod pe),
then ap ≡ bp (mod pe+1).

Proof. Suppose a ≡ b (mod pe), so that a = b + cpe for some c ∈ Z. Then
ap = bp+pbp−1cpe+dp2e for some d ∈ Z, and it follows that ap ≡ bp (mod pe+1). 2

Lemma 7.31. Let p be a prime, and let e be a positive integer such that pe > 2. If
a ≡ 1 + pe (mod pe+1), then ap ≡ 1 + pe+1 (mod pe+2).

Proof. Suppose a ≡ 1+pe (mod pe+1). By Lemma 7.30, ap ≡ (1+pe)p (mod pe+2).
Expanding (1 + pe)p, we have

(1 + pe)p = 1 + p · pe +
p−1
∑

k=2

(

p

k

)

pek + pep.

By Exercise 1.14, all of the terms in the sum on k are divisible by p1+2e, and
1 + 2e ≥ e + 2 for all e ≥ 1. For the term pep, the assumption that pe > 2 means
that either p ≥ 3 or e ≥ 2, which implies ep ≥ e + 2. 2

Now consider Theorem 7.28 in the case where p is odd. As we already know
that Z∗p is cyclic, assume e > 1. Let x ∈ Z be chosen so that [x]p generates Z∗p.
Suppose the multiplicative order of [x]pe ∈ Z∗pe is m. We have xm ≡ 1 (mod pe);
hence, xm ≡ 1 (mod p), and so it must be the case that p − 1 divides m; thus,
[xm/(p−1)]pe has multiplicative order exactly p − 1. By Theorem 6.38, if we find
an integer y such that [y]pe has multiplicative order pe−1, then [xm/(p−1)y]pe has
multiplicative order (p − 1)pe−1, and we are done. We claim that y := 1 + p does
the job. Any integer between 0 and pe − 1 can be expressed as an e-digit number in
base p; for example, y = (0 · · · 0 1 1)p. If we compute successive pth powers of y
modulo pe, then by Lemma 7.31 we have

y mod pe = (0 · · · 0 1 1)p,
yp mod pe = (∗ · · · ∗ 1 0 1)p,
yp

2
mod pe = (∗ · · · ∗ 1 0 0 1)p,

...
yp

e−2
mod pe = (1 0 · · · 0 1)p,

yp
e−1

mod pe = (0 · · · 0 1)p.

Here, “∗” indicates an arbitrary digit. From this table of values, it is clear (see
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Theorem 6.37) that [y]pe has multiplicative order pe−1. That proves Theorem 7.28
for odd p.

We now prove Theorem 7.28 in the case p = 2. For e = 1 and e = 2, the theorem
is easily verified. Suppose e ≥ 3. Consider the subgroup G ⊆ Z∗2e generated by
[5]2e . Expressing integers between 0 and 2e − 1 as e-digit binary numbers, and
applying Lemma 7.31, we have

5 mod 2e = (0 · · · 0 1 0 1)2,
52 mod 2e = (∗ · · · ∗ 1 0 0 1)2,

...
52e−3

mod 2e = (1 0 · · · 0 1)2,
52e−2

mod 2e = (0 · · · 0 1)2.

So it is clear (see Theorem 6.37) that [5]2e has multiplicative order 2e−2. We claim
that [−1]2e /∈ G. If it were, then since it has multiplicative order 2, and since every
cyclic group of even order has precisely one element of order 2 (see Theorem 6.32),
it must be equal to [52e−3

]2e ; however, it is clear from the above calculation that
52e−3 6≡ −1 (mod 2e). Let H ⊆ Z∗2e be the subgroup generated by [−1]2e . Then
from the above,G∩H = {[1]2e}, and hence by Theorem 6.25,G×H is isomorphic
to the subgroup G ·H of Z∗2e . But since the orders of G ×H and Z∗2e are equal, we
must have G ·H = Z∗2e . That proves the theorem.

Example 7.61. Let p be an odd prime, and let d be a positive integer dividing p−1.
Since Z∗p is a cyclic group of order p − 1, Theorem 6.32, implies that (Z∗p)d is the
unique subgroup of Z∗p of order (p− 1)/d, and moreover, (Z∗p)d = Z∗p{(p− 1)/d};
that is, for all α ∈ Z∗p, we have

α = βd for some β ∈ Z∗p ⇐⇒ α(p−1)/d = 1.

Setting d = 2, we arrive again at Euler’s criterion (Theorem 2.21), but by a very
different, and perhaps more elegant, route than that taken in our original proof of
that theorem. 2

EXERCISE 7.69. Show that if n is a positive integer, the group Z∗n is cyclic if and
only if

n = 1, 2, 4, pe, or 2pe,

where p is an odd prime and e is a positive integer.

EXERCISE 7.70. Let n = pq, where p and q are distinct primes such that p = 2p′+1
and q = 2q′ + 1, where p′ and q′ are themselves prime. Show that the subgroup
(Z∗n)2 of squares is a cyclic group of order p′q′.
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EXERCISE 7.71. Let n = pq, where p and q are distinct primes such that p - (q−1)
and q - (p − 1).

(a) Show that the map that sends [a]n ∈ Z∗n to [an]n2 ∈ (Z∗
n2 )n is a group iso-

morphism (in particular, you need to show that this map is unambiguously
defined).

(b) Consider the element α := [1+n]n2 ∈ Z∗
n2 ; show that for every non-negative

integer k, αk = [1 + kn]n2 ; deduce that α has multiplicative order n, and
also that the identity αk = [1 + kn]n2 holds for all integers k.

(c) Show that the map that sends ([k]n, [a]n) ∈ Zn×Z∗n to [(1+kn)an]n2 ∈ Z∗
n2

is a group isomorphism.

EXERCISE 7.72. This exercise develops an alternative proof of Theorem 7.29 that
relies on less group theory. Let n be the order of the groupG. Using Theorem 7.14,
show that for all d | n, there are at most d elements in the group whose multiplica-
tive order divides d. From this, deduce that for all d | n, the number of elements
of multiplicative order d is either 0 or ϕ(d). Now use Theorem 2.40 to deduce that
for all d | n (and in particular, for d = n), the number of elements of multiplicative
order d is equal to ϕ(d).


